Skip to main content

ChatOllama

Ollama 允许您在本地运行开源大型语言模型,例如 Llama 2。

Ollama 将模型权重、配置和数据打包成一个由 Modelfile 定义的单一包。

它优化了设置和配置细节,包括 GPU 使用。

有关支持的模型和模型变体的完整列表,请参见 Ollama 模型库

概述

集成细节

类别包名本地可序列化JS 支持包下载包最新
ChatOllamalangchain-ollamaPyPI - 下载PyPI - 版本

模型特性

工具调用结构化输出JSON模式图像输入音频输入视频输入令牌级流式处理原生异步令牌使用Logprobs

设置

首先,按照 这些说明 设置并运行本地Ollama实例:

  • 下载并在可用的支持平台上安装Ollama(包括Windows子系统Linux)
  • 通过 ollama pull 获取可用的LLM模型
  • 通过模型库查看可用模型的列表
  • 例如,ollama pull llama3
  • 这将下载模型的默认标记版本。通常,默认指向最新、参数最小的模型。

在Mac上,模型将下载到 ~/.ollama/models

在Linux(或WSL)上,模型将存储在 /usr/share/ollama/.ollama/models

  • 指定感兴趣的模型的确切版本,如 ollama pull vicuna:13b-v1.5-16k-q4_0(查看此实例中 Vicuna 模型的 各种标签
  • 要查看所有已拉取的模型,请使用 ollama list
  • 要直接从命令行与模型聊天,请使用 ollama run
  • 查看 Ollama 文档以获取更多命令。在终端中运行 ollama help 以查看可用命令。

如果您想获取模型调用的自动跟踪,您还可以通过取消注释以下内容来设置您的 LangSmith API 密钥:

# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
# os.environ["LANGSMITH_TRACING"] = "true"

安装

LangChain Ollama 集成位于 langchain-ollama 包中:

%pip install -qU langchain-ollama

实例化

现在我们可以实例化我们的模型对象并生成聊天完成:

  • TODO: 使用相关参数更新模型实例化。
<!--IMPORTS:[{"imported": "ChatOllama", "source": "langchain_ollama", "docs": "https://python.langchain.com/api_reference/ollama/chat_models/langchain_ollama.chat_models.ChatOllama.html", "title": "ChatOllama"}]-->
from langchain_ollama import ChatOllama

llm = ChatOllama(
model="llama3.1",
temperature=0,
# other params...
)

调用

<!--IMPORTS:[{"imported": "AIMessage", "source": "langchain_core.messages", "docs": "https://python.langchain.com/api_reference/core/messages/langchain_core.messages.ai.AIMessage.html", "title": "ChatOllama"}]-->
from langchain_core.messages import AIMessage

messages = [
(
"system",
"You are a helpful assistant that translates English to French. Translate the user sentence.",
),
("human", "I love programming."),
]
ai_msg = llm.invoke(messages)
ai_msg
AIMessage(content='The translation of "I love programming" from English to French is:\n\n"J\'adore programmer."', response_metadata={'model': 'llama3.1', 'created_at': '2024-08-19T16:05:32.81965Z', 'message': {'role': 'assistant', 'content': ''}, 'done_reason': 'stop', 'done': True, 'total_duration': 2167842917, 'load_duration': 54222584, 'prompt_eval_count': 35, 'prompt_eval_duration': 893007000, 'eval_count': 22, 'eval_duration': 1218962000}, id='run-0863daa2-43bf-4a43-86cc-611b23eae466-0', usage_metadata={'input_tokens': 35, 'output_tokens': 22, 'total_tokens': 57})
print(ai_msg.content)
The translation of "I love programming" from English to French is:

"J'adore programmer."

链接

我们可以像这样使用 将我们的模型与提示词模板连接起来:

<!--IMPORTS:[{"imported": "ChatPromptTemplate", "source": "langchain_core.prompts", "docs": "https://python.langchain.com/api_reference/core/prompts/langchain_core.prompts.chat.ChatPromptTemplate.html", "title": "ChatOllama"}]-->
from langchain_core.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
),
("human", "{input}"),
]
)

chain = prompt | llm
chain.invoke(
{
"input_language": "English",
"output_language": "German",
"input": "I love programming.",
}
)
AIMessage(content='Das Programmieren ist mir ein Leidenschaft! (That\'s "Programming is my passion!" in German.) Would you like me to translate anything else?', response_metadata={'model': 'llama3.1', 'created_at': '2024-08-19T16:05:34.893548Z', 'message': {'role': 'assistant', 'content': ''}, 'done_reason': 'stop', 'done': True, 'total_duration': 2045997333, 'load_duration': 22584792, 'prompt_eval_count': 30, 'prompt_eval_duration': 213210000, 'eval_count': 32, 'eval_duration': 1808541000}, id='run-d18e1c6b-50e0-4b1d-b23a-973fa058edad-0', usage_metadata={'input_tokens': 30, 'output_tokens': 32, 'total_tokens': 62})

工具调用

我们可以使用 工具调用 与一个 已经针对工具使用进行微调的 LLM

ollama pull llama3.1

有关创建自定义工具的详细信息,请参阅本指南。下面,我们演示如何在普通 Python 函数上使用 @tool 装饰器创建工具。

<!--IMPORTS:[{"imported": "tool", "source": "langchain_core.tools", "docs": "https://python.langchain.com/api_reference/core/tools/langchain_core.tools.convert.tool.html", "title": "ChatOllama"}, {"imported": "ChatOllama", "source": "langchain_ollama", "docs": "https://python.langchain.com/api_reference/ollama/chat_models/langchain_ollama.chat_models.ChatOllama.html", "title": "ChatOllama"}]-->
from typing import List

from langchain_core.tools import tool
from langchain_ollama import ChatOllama


@tool
def validate_user(user_id: int, addresses: List[str]) -> bool:
"""Validate user using historical addresses.

Args:
user_id (int): the user ID.
addresses (List[str]): Previous addresses as a list of strings.
"""
return True


llm = ChatOllama(
model="llama3.1",
temperature=0,
).bind_tools([validate_user])

result = llm.invoke(
"Could you validate user 123? They previously lived at "
"123 Fake St in Boston MA and 234 Pretend Boulevard in "
"Houston TX."
)
result.tool_calls
[{'name': 'validate_user',
'args': {'addresses': '["123 Fake St, Boston, MA", "234 Pretend Boulevard, Houston, TX"]',
'user_id': '123'},
'id': '40fe3de0-500c-4b91-9616-5932a929e640',
'type': 'tool_call'}]

多模态

Ollama 支持多模态大型语言模型,例如 bakllavallava

ollama pull bakllava

请确保更新 Ollama,以便您拥有最新版本以支持多模态。

import base64
from io import BytesIO

from IPython.display import HTML, display
from PIL import Image


def convert_to_base64(pil_image):
"""
Convert PIL images to Base64 encoded strings

:param pil_image: PIL image
:return: Re-sized Base64 string
"""

buffered = BytesIO()
pil_image.save(buffered, format="JPEG") # You can change the format if needed
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
return img_str


def plt_img_base64(img_base64):
"""
Disply base64 encoded string as image

:param img_base64: Base64 string
"""
# Create an HTML img tag with the base64 string as the source
image_html = f'<img src="data:image/jpeg;base64,{img_base64}" />'
# Display the image by rendering the HTML
display(HTML(image_html))


file_path = "../../../static/img/ollama_example_img.jpg"
pil_image = Image.open(file_path)

image_b64 = convert_to_base64(pil_image)
plt_img_base64(image_b64)
<img src="" /> 
<!--IMPORTS:[{"imported": "HumanMessage", "source": "langchain_core.messages", "docs": "https://python.langchain.com/api_reference/core/messages/langchain_core.messages.human.HumanMessage.html", "title": "ChatOllama"}, {"imported": "ChatOllama", "source": "langchain_ollama", "docs": "https://python.langchain.com/api_reference/ollama/chat_models/langchain_ollama.chat_models.ChatOllama.html", "title": "ChatOllama"}, {"imported": "StrOutputParser", "source": "langchain_core.output_parsers", "docs": "https://python.langchain.com/api_reference/core/output_parsers/langchain_core.output_parsers.string.StrOutputParser.html", "title": "ChatOllama"}]-->
from langchain_core.messages import HumanMessage
from langchain_ollama import ChatOllama

llm = ChatOllama(model="bakllava", temperature=0)


def prompt_func(data):
text = data["text"]
image = data["image"]

image_part = {
"type": "image_url",
"image_url": f"data:image/jpeg;base64,{image}",
}

content_parts = []

text_part = {"type": "text", "text": text}

content_parts.append(image_part)
content_parts.append(text_part)

return [HumanMessage(content=content_parts)]


from langchain_core.output_parsers import StrOutputParser

chain = prompt_func | llm | StrOutputParser()

query_chain = chain.invoke(
{"text": "What is the Dollar-based gross retention rate?", "image": image_b64}
)

print(query_chain)
90%

API 参考

有关所有 ChatOllama 功能和配置的详细文档,请访问 API 参考:https://python.langchain.com/api_reference/ollama/chat_models/langchain_ollama.chat_models.ChatOllama.html

相关


Was this page helpful?


You can also leave detailed feedback on GitHub.

扫我,入群扫我,找书