Skip to main content

Beam

调用 Beam API 包装器以在云部署中部署并对 gpt2 LLM 实例进行后续调用。需要安装 Beam 库并注册 Beam 客户端 ID 和客户端密钥。通过调用包装器创建并运行模型的实例,返回的文本与提示相关。然后可以通过直接调用 Beam API 进行额外的调用。

创建一个账户,如果你还没有的话。从 仪表板 获取你的 API 密钥。

安装 Beam CLI

!curl https://raw.githubusercontent.com/slai-labs/get-beam/main/get-beam.sh -sSfL | sh

注册API密钥并设置您的Beam客户端ID和秘密环境变量:

import os

beam_client_id = "<Your beam client id>"
beam_client_secret = "<Your beam client secret>"

# Set the environment variables
os.environ["BEAM_CLIENT_ID"] = beam_client_id
os.environ["BEAM_CLIENT_SECRET"] = beam_client_secret

# Run the beam configure command
!beam configure --clientId={beam_client_id} --clientSecret={beam_client_secret}

安装Beam SDK:

%pip install --upgrade --quiet  beam-sdk

直接从LangChain部署并调用Beam!

请注意,冷启动可能需要几分钟才能返回响应,但后续调用会更快!

<!--IMPORTS:[{"imported": "Beam", "source": "langchain_community.llms.beam", "docs": "https://python.langchain.com/api_reference/community/llms/langchain_community.llms.beam.Beam.html", "title": "Beam"}]-->
from langchain_community.llms.beam import Beam

llm = Beam(
model_name="gpt2",
name="langchain-gpt2-test",
cpu=8,
memory="32Gi",
gpu="A10G",
python_version="python3.8",
python_packages=[
"diffusers[torch]>=0.10",
"transformers",
"torch",
"pillow",
"accelerate",
"safetensors",
"xformers",
],
max_length="50",
verbose=False,
)

llm._deploy()

response = llm._call("Running machine learning on a remote GPU")

print(response)

相关


Was this page helpful?


You can also leave detailed feedback on GitHub.

扫我,入群扫我,找书