从 RefineDocumentsChain 迁移
RefineDocumentsChain 实现了一种分析长文本的策略。该策略如下:
- 将文本拆分为较小的文档;
- 对第一个文档应用一个过程;
- 根据下一个文档精炼或 更新结果;
- 在文档序列中重复,直到完成。
在此上下文中应用的一个常见过程是摘要,其中在处理长文本的块时,运行摘要会被修改。这对于与给定大型语言模型的上下文窗口相比较大的文本特别有用。
一个 LangGraph 实现为这个问题带来了许多优势:
- 在
RefineDocumentsChain
通过类内部的for
循环精炼摘要时,LangGraph 实现允许您逐步执行以监控或在需要时引导它。 - LangGraph 实现支持执行步骤和单个标记的流式处理。
- 因为它是由模块化组件组装而成,因此也很容易扩展或修改(例如,加入函数/工具调用或其他行为)。
下面我们将通过一个简单的示例来介绍RefineDocumentsChain
及其相应的LangGraph实现。
让我们首先加载一个聊天模型:
- OpenAI
- Anthropic
- Azure
- Cohere
- NVIDIA
- FireworksAI
- Groq
- MistralAI
- TogetherAI
pip install -qU langchain-openai
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass()
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-4o-mini")
pip install -qU langchain-anthropic
import getpass
import os
os.environ["ANTHROPIC_API_KEY"] = getpass.getpass()
from langchain_anthropic import ChatAnthropic
llm = ChatAnthropic(model="claude-3-5-sonnet-20240620")
pip install -qU langchain-openai
import getpass
import os
os.environ["AZURE_OPENAI_API_KEY"] = getpass.getpass()
from langchain_openai import AzureChatOpenAI
llm = AzureChatOpenAI(
azure_endpoint=os.environ["AZURE_OPENAI_ENDPOINT"],
azure_deployment=os.environ["AZURE_OPENAI_DEPLOYMENT_NAME"],
openai_api_version=os.environ["AZURE_OPENAI_API_VERSION"],
)
pip install -qU langchain-google-vertexai
import getpass
import os
os.environ["GOOGLE_API_KEY"] = getpass.getpass()
from langchain_google_vertexai import ChatVertexAI
llm = ChatVertexAI(model="gemini-1.5-flash")
pip install -qU langchain-cohere
import getpass
import os
os.environ["COHERE_API_KEY"] = getpass.getpass()
from langchain_cohere import ChatCohere
llm = ChatCohere(model="command-r-plus")
pip install -qU langchain-nvidia-ai-endpoints
import getpass
import os
os.environ["NVIDIA_API_KEY"] = getpass.getpass()
from langchain import ChatNVIDIA
llm = ChatNVIDIA(model="meta/llama3-70b-instruct")
pip install -qU langchain-fireworks
import getpass
import os
os.environ["FIREWORKS_API_KEY"] = getpass.getpass()
from langchain_fireworks import ChatFireworks
llm = ChatFireworks(model="accounts/fireworks/models/llama-v3p1-70b-instruct")
pip install -qU langchain-groq
import getpass
import os
os.environ["GROQ_API_KEY"] = getpass.getpass()
from langchain_groq import ChatGroq
llm = ChatGroq(model="llama3-8b-8192")
pip install -qU langchain-mistralai
import getpass
import os
os.environ["MISTRAL_API_KEY"] = getpass.getpass()
from langchain_mistralai import ChatMistralAI
llm = ChatMistralAI(model="mistral-large-latest")
pip install -qU langchain-openai
import getpass
import os
os.environ["TOGETHER_API_KEY"] = getpass.getpass()
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(
base_url="https://api.together.xyz/v1",
api_key=os.environ["TOGETHER_API_KEY"],
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
)
示例
让我们通过一个示例来总结一系列文档。我们首先生成一些简单的文档以作说明:
<!--IMPORTS:[{"imported": "Document", "source": "langchain_core.documents", "docs": "https://python.langchain.com/api_reference/core/documents/langchain_core.documents.base.Document.html", "title": "Migrating from RefineDocumentsChain"}]-->
from langchain_core.documents import Document
documents = [
Document(page_content="Apples are red", metadata={"title": "apple_book"}),
Document(page_content="Blueberries are blue", metadata={"title": "blueberry_book"}),
Document(page_content="Bananas are yelow", metadata={"title": "banana_book"}),
]
传统
Details
下面我们展示了一个使用 RefineDocumentsChain
的实现。我们为初始摘要和后续的精炼定义提示词模板,为这两个目的实例化单独的 LLMChain 对象,并用这些组件实例化 RefineDocumentsChain
。
<!--IMPORTS:[{"imported": "LLMChain", "source": "langchain.chains", "docs": "https://python.langchain.com/api_reference/langchain/chains/langchain.chains.llm.LLMChain.html", "title": "Migrating from RefineDocumentsChain"}, {"imported": "RefineDocumentsChain", "source": "langchain.chains", "docs": "https://python.langchain.com/api_reference/langchain/chains/langchain.chains.combine_documents.refine.RefineDocumentsChain.html", "title": "Migrating from RefineDocumentsChain"}, {"imported": "ChatPromptTemplate", "source": "langchain_core.prompts", "docs": "https://python.langchain.com/api_reference/core/prompts/langchain_core.prompts.chat.ChatPromptTemplate.html", "title": "Migrating from RefineDocumentsChain"}, {"imported": "PromptTemplate", "source": "langchain_core.prompts", "docs": "https://python.langchain.com/api_reference/core/prompts/langchain_core.prompts.prompt.PromptTemplate.html", "title": "Migrating from RefineDocumentsChain"}, {"imported": "ChatOpenAI", "source": "langchain_openai", "docs": "https://python.langchain.com/api_reference/openai/chat_models/langchain_openai.chat_models.base.ChatOpenAI.html", "title": "Migrating from RefineDocumentsChain"}]-->
from langchain.chains import LLMChain, RefineDocumentsChain
from langchain_core.prompts import ChatPromptTemplate, PromptTemplate
from langchain_openai import ChatOpenAI
# This controls how each document will be formatted. Specifically,
# it will be passed to `format_document` - see that function for more
# details.
document_prompt = PromptTemplate(
input_variables=["page_content"], template="{page_content}"
)
document_variable_name = "context"
# The prompt here should take as an input variable the
# `document_variable_name`
summarize_prompt = ChatPromptTemplate(
[
("human", "Write a concise summary of the following: {context}"),
]
)
initial_llm_chain = LLMChain(llm=llm, prompt=summarize_prompt)
initial_response_name = "existing_answer"
# The prompt here should take as an input variable the
# `document_variable_name` as well as `initial_response_name`
refine_template = """
Produce a final summary.
Existing summary up to this point:
{existing_answer}
New context:
------------
{context}
------------
Given the new context, refine the original summary.
"""
refine_prompt = ChatPromptTemplate([("human", refine_template)])
refine_llm_chain = LLMChain(llm=llm, prompt=refine_prompt)
chain = RefineDocumentsChain(
initial_llm_chain=initial_llm_chain,
refine_llm_chain=refine_llm_chain,
document_prompt=document_prompt,
document_variable_name=document_variable_name,
initial_response_name=initial_response_name,
)
我们现在可以调用我们的链:
result = chain.invoke(documents)
result["output_text"]
'Apples are typically red in color, blueberries are blue, and bananas are yellow.'
该 LangSmith 跟踪 由三个 LLM 调用组成:一个用于初始摘要,另外两个用于更新该摘要。当我们用最终文档的内容更新摘要时,过程完成。
LangGraph
Details
下面我们展示了这个过程的 LangGraph 实现:
- 我们使用与之前相同的两个模板。
- 我们生成一个简单的链用于初始摘要,该链提取第一个文档,将其格式化为提示并使用我们的 LLM 进行推理。
- 我们生成第二个
refine_summary_chain
,它对每个后续文档进行操作,精炼初始摘要。
我们需要安装 langgraph
:
pip install -qU langgraph
<!--IMPORTS:[{"imported": "StrOutputParser", "source": "langchain_core.output_parsers", "docs": "https://python.langchain.com/api_reference/core/output_parsers/langchain_core.output_parsers.string.StrOutputParser.html", "title": "Migrating from RefineDocumentsChain"}, {"imported": "ChatPromptTemplate", "source": "langchain_core.prompts", "docs": "https://python.langchain.com/api_reference/core/prompts/langchain_core.prompts.chat.ChatPromptTemplate.html", "title": "Migrating from RefineDocumentsChain"}, {"imported": "RunnableConfig", "source": "langchain_core.runnables", "docs": "https://python.langchain.com/api_reference/core/runnables/langchain_core.runnables.config.RunnableConfig.html", "title": "Migrating from RefineDocumentsChain"}, {"imported": "ChatOpenAI", "source": "langchain_openai", "docs": "https://python.langchain.com/api_reference/openai/chat_models/langchain_openai.chat_models.base.ChatOpenAI.html", "title": "Migrating from RefineDocumentsChain"}]-->
import operator
from typing import List, Literal, TypedDict
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnableConfig
from langchain_openai import ChatOpenAI
from langgraph.constants import Send
from langgraph.graph import END, START, StateGraph
llm = ChatOpenAI(model="gpt-4o-mini", temperature=0)
# Initial summary
summarize_prompt = ChatPromptTemplate(
[
("human", "Write a concise summary of the following: {context}"),
]
)
initial_summary_chain = summarize_prompt | llm | StrOutputParser()
# Refining the summary with new docs
refine_template = """
Produce a final summary.
Existing summary up to this point:
{existing_answer}
New context:
------------
{context}
------------
Given the new context, refine the original summary.
"""
refine_prompt = ChatPromptTemplate([("human", refine_template)])
refine_summary_chain = refine_prompt | llm | StrOutputParser()
# For LangGraph, we will define the state of the graph to hold the query,
# destination, and final answer.
class State(TypedDict):
contents: List[str]
index: int
summary: str
# We define functions for each node, including a node that generates
# the initial summary:
async def generate_initial_summary(state: State, config: RunnableConfig):
summary = await initial_summary_chain.ainvoke(
state["contents"][0],
config,
)
return {"summary": summary, "index": 1}
# And a node that refines the summary based on the next document
async def refine_summary(state: State, config: RunnableConfig):
content = state["contents"][state["index"]]
summary = await refine_summary_chain.ainvoke(
{"existing_answer": state["summary"], "context": content},
config,
)
return {"summary": summary, "index": state["index"] + 1}
# Here we implement logic to either exit the application or refine
# the summary.
def should_refine(state: State) -> Literal["refine_summary", END]:
if state["index"] >= len(state["contents"]):
return END
else:
return "refine_summary"
graph = StateGraph(State)
graph.add_node("generate_initial_summary", generate_initial_summary)
graph.add_node("refine_summary", refine_summary)
graph.add_edge(START, "generate_initial_summary")
graph.add_conditional_edges("generate_initial_summary", should_refine)
graph.add_conditional_edges("refine_summary", should_refine)
app = graph.compile()
from IPython.display import Image
Image(app.get_graph().draw_mermaid_png())
我们可以按如下方式逐步执行,并在精炼时打印出摘要:
async for step in app.astream(
{"contents": [doc.page_content for doc in documents]},
stream_mode="values",
):
if summary := step.get("summary"):
print(summary)
Apples are typically red in color.
Apples are typically red in color, while blueberries are blue.
Apples are typically red in color, blueberries are blue, and bananas are yellow.
在LangSmith追踪中,我们再次恢复了三个大型语言模型调用,执行与之前相同的功能。
请注意,我们可以从应用程序流式传输令牌,包括来自中间步骤的令牌:
async for event in app.astream_events(
{"contents": [doc.page_content for doc in documents]}, version="v2"
):
kind = event["event"]
if kind == "on_chat_model_stream":
content = event["data"]["chunk"].content
if content:
print(content, end="|")
elif kind == "on_chat_model_end":
print("\n\n")
Ap|ples| are| characterized| by| their| red| color|.|
Ap|ples| are| characterized| by| their| red| color|,| while| blueberries| are| known| for| their| blue| hue|.|
Ap|ples| are| characterized| by| their| red| color|,| blueberries| are| known| for| their| blue| hue|,| and| bananas| are| recognized| for| their| yellow| color|.|
下一步
请参阅本教程以获取更多基于大型语言模型的摘要策略。
查看LangGraph文档以获取有关使用LangGraph构建的详细信息。